

MPICH-GX: Message Passing Interface CHameleon-Grid eXensible

Kwon, Oh-kyoung KISTI Supercomputing Center

Agenda

- Motivation
- What is MPICH-GX ?
 - Private IP Support
 - Fault Tolerance Support
- Experiment
- Conclusion

The Problems (1/2)

- Running on a Grid presents the following problems:
 - Standard MPI implementations require that all compute nodes are visible to each other, making it necessary to have them on public IP addresses
 - Public IP addresses for assigning to all compute nodes aren't always readily available
 - There are security issues when exposing all compute nodes with public IP addresses
 - At developing countries, the majority of government and research institutions only have public IP addresses

The Problems (2/2)

- Running on a Grid presents the following problems: (cont.)
 - What if a node is broken or a running process is die in geographically distributed Grid environments?
 - Difficult to manually find the broken node and the failure process among many compute nodes

What is MPICH-GX?

- MPICH-GX is a patch of MPICH-G2 to extend following functionalities required in the Grid.
 - Private IP Support
 - Fault Tolerant Support

Private IP Support

 MPICH-G2 does not support private IP clusters

How To Penetrate Firewalls (1/2)

- User-level proxy
 - Use separate application
 - It is easy to implement and portable
 - But it causes performance degradation due to additional user-kernel level switching

How To Penetrate Firewalls (2/2)

- Kernel-level proxy
 - Generally, it is neither easy to implement nor portable
 - But it can minimize communication overhead due to firewall
 - NAT (Network Address Translation)
 - Main mechanisms of Linux masquerading

NAT Hole Punching (1/2)

- Easily applicable kernel-level solution
 - It is a way to reach otherwise unreachable hosts with a minimal additional effort
 - All you need is a server that coordinates the connections
 - When a client registers with server, it records two endpoints for that client

NAT Hole Punching (2/2)

Fault Tolerant Support

- We provide a checkpointing-recovery system for Grid.
- Our library requires no modifications of application source codes.
 - → affects the MPICH communication characteristics as less as possible.
- All of the implementation have been done at the low level, that is, the abstract device level of MPICH

Experiment (1/2)

- Experiment of MPICH-GX using Atmospheric application (MM5/WRF)
- Collaboration efforts with PRAGMA people (CICESE in Mexico, SDSC)
- Testbed
 - Geographically distributed 5 Linux Clusters: Daejeon, Seoul, Busan, Gwangju, Pohang
 - Network bandwidth between nodes is 1Gbps

Analyze the output

- 12 nodes on single cluster (orion cluster): 17.55min
- 12 nodes on cross-site
 - 6 nodes on orion + 6 nodes on eros, where all nodes have public IP: 21min
 - 6 nodes on orion + 6 nodes on eros, where where the nodes on orion have private
 IP and the nodes on eros have public IP: 24min
- 16 nodes on cross-site
 - 8 nodes on orion + 8 nodes on eros, where all nodes have public IP: 18min
 - 8 nodes on orion + 8 nodes on eros, where where the nodes on orion have private
 - IP and the nodes on eros have public IP: 20min

Conclusion

- MPICH-GX is a patch of MPICH-G2 to provide useful functionalities for supporting the private IP and fault tolerance
- The application of WRF model work well with MPICH-GX at geographically distributed Grid environments.
- The functionality of the private IP could be usable practically, and the performance of the private IP is reasonable.

