MOSES: Monitoring and Security in the Era of GRIDs

Kostas G. Anagnostakis

Institute of Computer Science (ICS)
Foundation for Research & Technology, Hellas (FORTH)
Background

- **SCAMPI:** IST-funded R&D project (2002-2005)
 - Developed a scalable monitoring platform for the Internet 10Gbit/s network monitoring card, Monitoring API, and security applications

- **LOBSTER:** Specific Support Action (2004-2006)
 - Rolling out a distributed monitoring infrastructure
 - Focus: security, detection of large-scale attacks

- **NoAH:** Specific Support Action (2005-2007)
 - Develop & roll out a distributed honeypot infrastructure
 - Honeypot tech complements passive monitoring
Motivation: opportunities & threats

• The infrastructure needed for building security services for detecting cyberattacks is a large-scale distributed system
 – Involves data sensors, processing resources and storage
 – Very similar to a GRID, but developed independently

 Can we benefit from GRID technology and existing GRID infrastructure for building better security services?

• GRIDs, being large-scale distributed systems, create new threats for large-scale distributed attacks
 – Existing GRID sec. model deals primarily with access control
 – New threats: DDoS, abuse, password/key cracking, …

 Can we benefit from security/monitoring technology for building safer GRID infrastructures?
MOSES: key objectives

• Develop the technology needed for efficiently implementing security monitoring services on GRID platforms

• Develop a distributed monitoring system and the detection technology needed to prevent abuse of GRID resources
Example #1: Shadow honeypots on the GRID

• One of the biggest problems in detecting unknown (zero-day) attacks is false positives
 – Detection heuristics often flag legitimate traffic as suspect
 – Result is loss of confidence in detection (“cry wolf’’)

• We have recently developed a solution to this problem using “shadow honeypots” (paper at Usenix Sec’05)
 – Basic idea is to add a second filter after detection, by replaying suspect traffic in a “clean room testing” environment
 – Result is zero false positives, but the cost is potentially huge

• Opportunity: run shadow honeypot services on the GRID
Example #2: Attack signature validation

- Once an attack becomes known, we need a signature so that end-systems/firewalls/IDSes can block the attack
 - Attack descriptions are often inexact, resulting in false positives
 - Network admins often reluctant to install new signatures
 - But really no time to think: worms can spread in minutes

- We need a signature validation service to rapidly test signature accuracy on historical traffic data
 - Help signature developers, provide assurance to network admins
 - Hard to do locally: need to test signature against TBytes of traffic

- Opportunity: distributed signature validation on the GRID
Next steps (short-term)

- Team up with **EU** & **Asian** partners
 - Background in GRID R&D, security R&D, or both
- Carve out a subset of important problems
 - GRID-security space is huge, so **focus** is the key
- Submit proposal
 - ideally (but not necessarily) in **September’05**

For more information and to express interest, email **kanag@ics.forth.gr**